A Posteriori Finite Element Error Estimation for Diffusion Problems
نویسندگان
چکیده
Adjerid et al. 2] and Yu 19, 20] show that a posteriori estimates of spatial discretiza-tion errors of piecewise bi-p polynomial nite element solutions of elliptic and parabolic problems on meshes of square elements may be obtained from jumps in solution gradients at element vertices when p is odd and from local elliptic or parabolic problems when p is even. We show that these simple error estimates are asymptotically correct for other nite element spaces. The key requirement is that the trial space contain all monomial terms of degree p + 1 except for x p+1 1 and x p+1 2 in a Carte-sian (x 1 ; x 2) frame. Computational results show that the error estimates are accurate, robust, and eecient for a wide range of problems, including some that are not supported by the present theory. These involve quadrilateral-element meshes, problems with singularities, and nonlinear problems.
منابع مشابه
A posteriori $ L^2(L^2)$-error estimates with the new version of streamline diffusion method for the wave equation
In this article, we study the new streamline diffusion finite element for treating the linear second order hyperbolic initial-boundary value problem. We prove a posteriori $ L^2(L^2)$ and error estimates for this method under minimal regularity hypothesis. Test problem of an application of the wave equation in the laser is presented to verify the efficiency and accuracy of the method.
متن کاملA posteriori error analysis of finite element method for linear nonlocal diffusion and peridynamic models
In this paper, we present some results on a posteriori error analysis of finite element methods for solving linear nonlocal diffusion and bond-based peridynamic models. In particular, we aim to propose a general abstract frame work for a posteriori error analysis of the peridynamic problems. A posteriori error estimators are consequently prompted, the reliability and efficiency of the estimator...
متن کاملA posteriori error estimation of residual type for anisotropic diffusion-convection-reaction problems
This paper presents an a posteriori residual error estimator for diffusion– convection–reaction problems with anisotropic diffusion, approximated by a SUPG finite element method on isotropic or anisotropic meshes in Rd, d = 2 or 3. The equivalence between the energy norm of the error and the residual error estimator is proved. Numerical tests confirm the theoretical results.
متن کاملEquivalent a posteriori error estimates for spectral element solutions of constrained optimal control problem in one dimension
In this paper, we study spectral element approximation for a constrained optimal control problem in one dimension. The equivalent a posteriori error estimators are derived for the control, the state and the adjoint state approximation. Such estimators can be used to construct adaptive spectral elements for the control problems.
متن کاملAn a posteriori error estimate for finite element approximations of a singularly perturbed advection-diffusion problem
In this paper the author presents an a posteriori error estimator for approximations of the solution to an advectiondiffusion equation with a non-constant, vector-valued diffusion coefficient e in a conforming finite element space. Based on the complementary variational principle, we show that the error of an approximate solution in an associated energy norm is bounded by the sum of the weighte...
متن کاملDuality-based adaptivity in finite element discretization of heterogeneous multiscale problems
This paper introduces an framework for adaptivity for a class of heterogeneous multiscale finite element methods for elliptic problems, which is suitable for a posteriori error estimation with separated quantification of the model error as well as the macroscopic and microscopic discretization errors. The method is derived within a general framework for “goal-oriented” adaptivity, the so-called...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- SIAM J. Scientific Computing
دوره 21 شماره
صفحات -
تاریخ انتشار 1999